Salinerito
Family and structure of internet
jueves, 23 de julio de 2009
lunes, 6 de julio de 2009
Introducción
INTRODUCCION
El principal objetivo de esta área de conocimientos consiste en formular y resolver diversos problemas orientados a la toma de decisiones. La naturaleza de los problemas abordados puede ser determinística, como en los Modelos de Programación Matemática, donde la teoría de probabilidades no es necesaria, o bien de problemas donde la presencia de incertidumbre tiene un rol preponderante, como en los Modelos Probabilísticos. Hoy en día, la toma de decisiones abarca una gran cantidad de problemas reales cada más complejos y especializados, que necesariamente requieren del uso de metodologías para la formulación matemática de estos problemas y, conjuntamente, de métodos y herramientas de resolución, como los que provee la Investigación de Operaciones.
Definición
Investigación de Operaciones o Investigación Operacional
Se puede definir de la siguiente manera: “La Investigación de Operaciones es la aplicación por grupos interdisciplinarios del método científico a problemas relacionados con el control de las organizaciones o sistemas a fin de que se produzcan soluciones que mejor sirvan a los objetivos de toda la organización”.
Características de la Investigación de Operaciones
Características de la Investigación de Operaciones
Es muy notable el rápido crecimiento del tamaño y la complejidad de las organizaciones (empresas) humanas que se ha dado en estos últimos tiempos. Tal tamaño y complejidad nos hace pensar que una sola decisión equivocada puede repercutir grandemente en los intereses y objetivos de la organización y en ocasiones pueden pasar años para rectificar tal error. También el ritmo de la empresa de hoy implica que las DECISIONES se tomen más rápidamente que nunca, pues el hecho de posponer la acción puede dar una decisiva ventaja al contrario en este mundo de la competencia. La palpable dificultad de tomar decisiones ha hecho que el hombre se aboque en la búsqueda de una herramienta o método que le permita tomar las mejores decisiones de acuerdo a los recursos disponibles y a los objetivos que persigue. Tal herramienta recibió el nombre de Investigación de Operaciones. De la definición de Investigación de Operaciones, podemos resaltar los siguientes términos: organización, sistema, grupos interdisciplinarios, objetivo y metodología científica. Una organización puede entenderse como un sistema, en el cual existen componentes; canales que comunican tales componentes e información que fluye por dichos canales. En todo sistema las componentes interactúan unas con otras y tales interacciones pueden ser controlables e incontrolables. En un sistema grande, las componentes se relacionan de muchas maneras, pero no todas son importantes, o mejor dicho, no todas las interacciones tienen efectos importantes en las componentes del sistema. Por lo tanto es necesario que exista un procedimiento sistemático que identifique a quienes toman decisiones y a las interacciones que tengan importancia para los objetivos de la organización o sistema. Uno de esos procedimientos es precisamente la Investigación de Operaciones. Una estructura por la que no fluye información, no es dinámica, es decir, no podemos considerarla como un sistema. Por lo tanto podemos decir que la información es lo que da “vida” a las estructuras u organizaciones humanas.
enfoque de Investigación de Operaciones
La contribución del enfoque de Investigación de Operaciones proviene principalmente de
1. La estructuración de una situación de la vida real como un modelo matemático, logrando una abstracción de los elementos esenciales para que pueda buscarse una solución que concuerde con los objetivos del tomador de decisiones. Esto implica tomar en cuenta el problema dentro del contexto del sistema completo.
2. El análisis de la estructura de tales soluciones y el desarrollo de procedimientos sistemáticos para obtenerlas.
3. El desarrollo de una solución, incluyendo la teoría matemática si es necesario, que lleva al valor óptimo de la medida de lo que se espera del sistema (o quizá que compare los cursos de acción opcionales evaluando esta medida para cada uno).
Concepto de optimización.
Una característica adicional, que se mencionó como de pasada, es que la Investigación de Operaciones intenta encontrar la mejor solución, o la solución óptima, al problema bajo consideración. En lugar de contentarse con sólo mejorar el estado de las cosas, la meta es identificar el mejor curso de acción posible. Aún cuando debe interpretarse con todo cuidado, esta "búsqueda de la optimalidad" es un aspecto muy importante dentro de la Investigación de Operaciones.
Áreas de aplicación de la Investigación de Operaciones
Como su nombre lo dice, Investigación de Operaciones significa "hacer investigación sobre las operaciones". Esto dice algo del enfoque como del área de aplicación. Entonces, la Investigación de Operaciones se aplica a problemas que se refieren a la conducción y coordinación de operaciones o actividades dentro de una organización. La naturaleza de la organización es esencialmente inmaterial y, de hecho, la Investigación de Operaciones se ha aplicado en los negocios, la industria, la milicia, el gobierno, los hospitales, etc. Así, la gama de aplicaciones es extraordinariamente amplia. Casi todas las organizaciones más grandes del mundo (alrededor de una docena) y una buena proporción de las industrias más pequeñas cuentan con grupos bien establecidos de Investigación de Operaciones. Muchas industrias, incluyendo la aérea y de proyectiles, la automotriz, la de comunicaciones, computación, energía eléctrica, electrónica, alimenticia, metalúrgica, minera, del papel, del petróleo y del transporte, han empleado la Investigación de Operaciones. Las instituciones financieras, gubernamentales y de salud están incluyendo cada vez más estas técnicas.
Para ser más específicos, se consideran algunos problemas que se han resuelto mediante algunas técnicas de Investigación de Operaciones. La programación lineal se ha usado con éxito en la solución de problemas referentes a la asignación de personal, la mezcla de materiales, la distribución y el transporte y las carteras de inversión. La programación dinámica se ha aplicado con buenos resultados en áreas tales como la planeación de los gastos de comercialización, la estrategia de ventas y la planeación de la producción. La teoría de colas ha tenido aplicaciones en la solución de problemas referentes al congestionamiento del tráfico, al servicio de máquinas sujetas a descomposturas, a la determinación del nivel de la mano de obra, a la programación del tráfico aéreo, al diseño de presas, a la programación de la producción y a la administración de hospitales. Otras técnicas de Investigación de Operaciones, como la teoría de inventarios, la teoría de juegos y la simulación, han tenido exitosas aplicaciones en una gran variedad de contextos.
Para ser más específicos, se consideran algunos problemas que se han resuelto mediante algunas técnicas de Investigación de Operaciones. La programación lineal se ha usado con éxito en la solución de problemas referentes a la asignación de personal, la mezcla de materiales, la distribución y el transporte y las carteras de inversión. La programación dinámica se ha aplicado con buenos resultados en áreas tales como la planeación de los gastos de comercialización, la estrategia de ventas y la planeación de la producción. La teoría de colas ha tenido aplicaciones en la solución de problemas referentes al congestionamiento del tráfico, al servicio de máquinas sujetas a descomposturas, a la determinación del nivel de la mano de obra, a la programación del tráfico aéreo, al diseño de presas, a la programación de la producción y a la administración de hospitales. Otras técnicas de Investigación de Operaciones, como la teoría de inventarios, la teoría de juegos y la simulación, han tenido exitosas aplicaciones en una gran variedad de contextos.
Metodología de la Investigación de Operaciones
Metodología de la Investigación de Operaciones
El proceso de la Investigación de Operaciones comprende las siguientes fases:
1. Formulación y definición del problema.
2. Construcción del modelo.
3. Solución del modelo.
4. Validación del modelo.
5. Implementación de resultados.
Demos una explicación de cada una de las fases:
1. Formulación y definición del problema. En esta fase del proceso se necesita: una descripción de los objetivos del sistema, es decir, qué se desea optimizar; identificar las variables implicadas, ya sean controlables o no; determinar las restricciones del sistema. También hay que tener en cuenta las alternativas posibles de decisión y las restricciones para producir una solución adecuada.
2. Construcción del modelo. En esta fase, el investigador de operaciones debe decidir el modelo a utilizar para representar el sistema. Debe ser un modelo tal que relacione a las variables de decisión con los parámetros y restricciones del sistema. Los parámetros (o cantidades conocidas) se pueden obtener ya sea a partir de datos pasados o ser estimados por medio de algún método estadístico. Es recomendable determinar si el modelo es probabilístico o determinístico. El modelo puede ser matemático, de simulación o heurístico, dependiendo de la complejidad de los cálculos matemáticos que se requieran.
3. Solución del modelo. Una vez que se tiene el modelo, se procede a derivar una solución matemática empleando las diversas técnicas y métodos matemáticos para resolver problemas y ecuaciones. Debemos tener en cuenta que las soluciones que se obtienen en este punto del proceso, son matemáticas y debemos interpretarlas en el mundo real. Además, para la solución del modelo, se deben realizar análisis de sensibilidad, es decir, ver como se comporta el modelo a cambios en las especificaciones y parámetros del sistema. Esto se hace, debido a que los parámetros no necesariamente son precisos y las restricciones pueden estar equivocadas.
4. Validación del modelo. La validación de un modelo requiere que se determine si dicho modelo puede predecir con certeza el comportamiento del sistema. Un método común para probar la validez del modelo, es someterlo a datos pasados disponibles del sistema actual y observar si reproduce las situaciones pasadas del sistema. Pero como no hay seguridad de que el comportamiento futuro del sistema continúe replicando el comportamiento pasado, entonces siempre debemos estar atentos de cambios posibles del sistema con el tiempo, para poder ajustar adecuadamente el modelo.
5. Implementación de resultados. Una vez que hayamos obtenido la solución o soluciones del modelo, el siguiente y último paso del proceso es interpretar esos resultados y dar conclusiones y cursos de acción para la optimización del sistema. Si el modelo utilizado puede servir a otro problema, es necesario revisar, documentar y actualizar el modelo para sus nuevas aplicaciones.
Suscribirse a:
Entradas (Atom)