El enfoque de la Investigación de Operaciones es el modelaje. Un modelo es una herramienta que nos sirve para lograr una visión bien estructurada de la realidad. Así, el propósito del modelo es proporcionar un medio para analizar el comportamiento de las componentes de un sistema con el fin de
optimizar su desempeño. La ventaja que tiene el sacar un modelo que represente una situación real, es que nos permite analizar tal situación sin interferir en la operación que se realiza, ya que el modelo es como si fuera "un espejo" de lo que ocurre.
Para aumentar la abstracción del mundo real, los modelos se clasifican como 1) icónicos, 2) análogos, 3) simbólicos.
Los modelos icónicos son la representación física, a escala reducida o aumentada de un sistema real.
Los modelos análogos esencialmente requieren la sustitución de una propiedad por otra con el fin de permitir la manipulación del modelo. Después de resolver el problema, la solución se reinterpreta de acuerdo al sistema original.
Los modelos más importantes para la investigación de operaciones, son los modelos simbólicos o matemáticos, que emplean un conjunto de símbolos y funciones para representar las variables de decisión y sus relaciones para describir el comportamiento del sistema. El uso de las matemáticas para representar el modelo, el cual es una representación aproximada de la realidad, nos permite aprovechar las computadoras de alta velocidad y técnicas de solución con matemáticas avanzadas.
Un modelo matemático comprende principalmente tres conjuntos básicos de elementos. Estos son: 1) variables y parámetros de decisión, 2) restricciones y 3) función objetivo.
1. Variables y parámetros de decisión. Las variables de decisión son las incógnitas (o decisiones) que deben determinarse resolviendo el modelo. Los parámetros son los valores conocidos que relacionan las variables de decisión con las restricciones y función objetivo. Los parámetros del modelo pueden ser determinísticos o probabilísticos.
2. Restricciones. Para tener en cuenta las limitaciones tecnológicas, económicas y otras del sistema, el modelo debe incluir restricciones (implícitas o explícitas) que restrinjan las variables de decisión a un rango de valores factibles.
3. Función objetivo. La función objetivo define la medida de efectividad del sistema como una función matemática de las variables de decisión.
La solución óptima será aquella que produzca el mejor valor de la función objetivo, sujeta a las restricciones.
No hay comentarios:
Publicar un comentario